
CSCI 150

Exam 1 Solutions

1. What does this print? Read it carefully.

def increase(x) :

 x = x+10

 ret urn x

def main() :

 x = 5

 if x < 10:

 increase(x)

 print (x)

main()

This prints 5. The funct ion increase(x) has no way to change the variable x in

main() ; the only assignment to x in main() is x=5/

2. The following program tries to find and print the next prime number after 25, which is 29.

Unfortunately, it crashes with an error message that points at the line print(nextP). The error

message says that nextP is not defined. Doesn’t the line nextP = n within functionn nextPrime()

define nextP? Explain this error message in one or two sentences. You don’t need to fix the

program; just explain why nextP is not defined.

def isPrime(x) :

 # This t ries t o say if x is a prime number

 for d in range(2,x) :

 if x%d == 0:

 ret urn False

 ret urn True

def next Prime(n) :

 # This looks for t he next prime number af t er n

 x = n+1

 while not isPrime(x) :

 x = x+1

 next P = x

def main() :

 next Prime(25)

 print (next P)

main()

Funct ion nextPrime(n) has a variable nextP, but main() can’t see it because

funct ions can’t see the variables of any other funct ions. There is no variable

nextP in main() .

3. Consider the following program, which has a recursive function count():

def print er(n) :

 if n > 0:

 print (n)

def count (n):

 if n == 0:

 print (" I'm done!")

 else:

 print er(n)

 count (n-2)

def main() :

 count (6)

main()

If I call count(6) in main() the program prints

 6

 4

 2

 I’m done!

However, if I call count(7) I get pages and pages of error messages, then the program crashes,

finally saying “maximum recursion depth exceeded”. Explain in one or two sentences what is

wrong. You don’t need to correct the program, just explain why it doesn’t work.

Recursive functions have to ensure that their arguments eventually reach the base case.

With function count(n) that happens with even numbers – if you start with any even

number and subtract 2 from it enough times you will eventually get to 0. That doesn’t

happen with odd numbers – you eventually get to 3, then to 1, then to 1 then to -1, and after

that to more negative numbers. With odd arguments you never get to the base case, 0.

4. Here is a program that is supposed to check for palindromes.

def reverse(s) :

 rev = " "

 for let t er in s:

 rev = let t er + rev

 print (" The reversal of %s is %s." %(s, rev))

 return rev

def isPalindrome(st r) :

 if st r == reverse(st r) :

 print (" %s IS a palindrome" %st r)

 return True

 else:

 print (" Nope. %s IS NOT a palindrome." %st r)

 return False

def main() :

 if isPalindrome(" bob") :

 print (" Yippee")

main()

When I run this is prints

 The reversal of bob is bob.

 Nope. bob IS NOT a palindrome

a) Explain in one sentence why this says “bob” is not a palindrome when it has already said

“bob” is the reversal of “bob”.

 The function reverse(s) doesn’t return anything, so the line

 if str == reverse(str)

 in main() becomes

 if str == None

 which is False.

b) Fix the program so it says “bob” is a palindrome and then prints “Yippee” in main(). You

don’t need to rewrite the program; cross out lines or add code to the text above.

See the lines in bold in the program. We need to add return statements to both

reverse() and isPalindrome().

5. Write a program that repeatedly asks the user for numbers; the input ends when the user enters 0.

The program then prints the sum of the numbers it was given. Here is a sample run, where the

text in bold is printed by the computer:

 number: 3

 number: 14

 number: 25

 number: 0

 Those sum to 42

def main() :

 sum = 0

 done = False

 while not done:

 n = eval(input("Number? "))

 if n == 0:

 done = True

 else:

 sum = sum + n

 print ("The sum is %d."%sum)

main()

6. Write a recursive function noSpace(s) that takes a string argument s and returns a new string just

like s but with the spaces removed. So noSpace(“bob”) returns “bob”,

noSpace(“Marvin Krislov”) returns “MarvinKrislov” and noSpace(“a b c d e f g”) returns

“abcdefg”.

def noSpace(s):

 if len(s) == 0:

 return s

 elif s[0] == " ":

 return noSpace(s[1:])

 else:

 return s[0] + noSpace(s[1:])

7. Write a function moreBobs(s, t) that takes two string arguments, s and t and returns the one with

more instances of “bob”. If neither has any instances of “bob” the function should return

“bobless”. If they have the same number of instances of “bob” it should return “tie”. For

example, moreBobs(“bob is the bob”, “bobobob”) should return “bobobob”, (successive

instances of “bob” can share letters so “bob is the bob” has 2 instances while “bobobob” has 3)

and moreBobs(“bob is the blob”, “shishkabob”) should return “tie”.

def countBobs(s):

 # This returns the number of "bob" instances

 # in string s

 count = 0

 for i in range(0, len(s) -2) :

 if s[i:i+3] == "bob":

 count = count + 1

 return count

def moreBobs(s, t) :

 ns = countBobs(s)

 nt = countBobs(t)

 if ns == 0 and nt == 0:

 return "bobless"

 elif ns == nt:

 return "t ie"

 elif ns > nt:

 return s

 else:

 return t

